Accolades

- UNDP Mahatma Award 2023
- Africa Food Prize 2021
- 9th India CSR Award 2020
- National CSR Award India 2019
- King Baudouin Award 1996, 1998 and 2002

Varieties/hybrids released

1,230 ICRISAT varieties released in 81 countries across the globe as of 2021

Germplasm shared

More than 1.64 million seed samples distributed to 150 countries

ICRISAT locations

ICRISAT - Hyderabad, India (Headquarters); New Delhi, India (liaison office).
ICRISAT - Nairobi, Kenya (Regional hub ESA); Addis Ababa, Ethiopia; Lilongwe, Malawi; Bulawayo, Zimbabwe; Maputo, Mozambique; and Dar es Salaam, Tanzania.
ICRISAT - Bamako, Mali (Regional hub WCA); Niamey, Niger; Kano, Nigeria; and Dakar, Senegal.

ICRISAT - Hyderabad, India (Headquarters); New Delhi, India (liaison office).
ICRISAT - Nairobi, Kenya (Regional hub ESA); Addis Ababa, Ethiopia; Lilongwe, Malawi; Bulawayo, Zimbabwe; Maputo, Mozambique; and Dar es Salaam, Tanzania.
ICRISAT - Bamako, Mali (Regional hub WCA); Niamey, Niger; Kano, Nigeria; and Dakar, Senegal.

About ICRISAT

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is a pioneering, non-profit international scientific research for development organization, specializing in improving dryland farming and agri-food systems. The Institute was established in 1972, by a consortium led by the Ford Foundation and Rockefeller Foundation with the support from the Government of India. ICRISAT works with global partners to develop innovative science-backed solutions to overcome hunger, malnutrition, poverty, and environmental degradation in service to the 2.1 billion people who reside in the drylands of Asia, sub-Saharan Africa, and beyond.

Research focus

The challenges facing the drylands are inextricably linked. As such the Institute adopts an holistic approach to its research with a focus on:

- Evidence-based solutions
- Markets to make farming more profitable
- Partnerships
- Environmental and business sustainability
- Participation, gender and social inclusion
- Our genebank conserves biodiversity
- Development of new varieties to counter biotic and abiotic stress - chickpea, pigeonpea, groundnut, pearl millet, sorghum, finger millet and small millets.
- Seed systems provide access to high quality modern variety seeds
- Inclusive and sustainable value chains, post harvest management and processing
- Market access and linkages
- Capacity development and raising entrepreneurs
- Women and youth empowerment
- Climate resilience
- Water management, prevention of soil degradation and nutrient loss
- Digital agriculture and geospatial technologies
Climate Change in the Drylands

Challenge
Climate change has degraded 12.6% (5.43 million km²) of drylands, contributing to desertification and affecting 213 million people, 93% of who live in developing economies.

Proven solutions
We build and sustain the climate resilience of smallholder farmers and rehabilitate degraded agroecosystems through regenerative agriculture practices that are multi-disciplinary and science-led.

Our approach
ICRISAT’s research on remote sensing, prediction of climate change effect, weather advisory and climate smart technology implemented through climate smart village approach.

Climate preparedness using world-class digital tools
- Futuristic multi-models for climate-smart strategies.
- Weather advisories and apps
- GIS tools for landscape studies and monitoring progress

Future-ready crops: Good for you, the farmer and the planet
- Advanced genomic technologies assist in breeding crops that are biofortified, high-yielding, early-maturing, stress tolerant and high in biomass for fodder and fuel.
- Rapid Generation technology reduces the breeding cycle by about 40%

Transforming landscapes through soil and water management
- Integrated farm and landscape management models address soil degradation through soil health and water management practices, land restoration and crop-livestock integrated systems

Successful impact of ICRISAT’s interventions

Improved food security
Bio-reclamation of degraded land by Women in Niger led to increased carbon sequestration. In addition, women were empowered through land acquisition, better incomes and improved household nutrition.

Reversed migration
In Bundelkhand, India and in Yewol, Ethiopia, watershed interventions fostered through community participation stemmed farmers’ migration.

Improved incomes
Impact of watershed projects in India
- 72 million hectares benefit from double cropping
- 30-60% farm losses reduced due to water availability

Partnerships
ICRISAT’s work contributes to the Sustainable Development Goals

www.icrisat.org

Mar/2024